Systematic multiscale simulation of membrane protein systems
نویسندگان
چکیده
منابع مشابه
Multiscale Simulation of a Polyelectrolyte Membrane for Fuel Cells
A multiscale simulation is presented to study the proton-conducting polyelectrolyte membrane Nafion for a fuel cell. Firstly, the mesoscopic structure of the hydrated Nafion membrane was predicted by dissipative particle dynamics simulation. In this method, a molecular structure is represented using a coarse-grained model, and the interaction parameters are estimated by calculating the energy o...
متن کاملDynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملMultiscale Simulation of Protein Cluster Dynamics – the Encounter Complex
c © 2007 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher ment...
متن کاملSimulation of Multiphysics Multiscale Systems, 6th International Workshop
Modeling and Simulation of Multiphysics Multiscale Systems (SMMS) poses a grand challenge to computational science. To adequately simulate numerous intertwined processes characterized by different spatial and temporal scales spanning many orders of magnitude, sophisticated models and advanced computational techniques are required. The aim of the SMMS workshop is to encourage and review the prog...
متن کاملMultiscale modeling and simulation of microtubule-motor-protein assemblies.
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Structural Biology
سال: 2009
ISSN: 0959-440X
DOI: 10.1016/j.sbi.2009.03.001